skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swanson‐Hysell, N L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: PmagPy: Software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) Database 
    more » « less
  2. Abstract Sampling strategies used in paleomagnetic studies play a crucial role in dictating the accuracy of our estimates of properties of the ancient geomagnetic field. However, there has been little quantitative analysis of optimal paleomagnetic sampling strategies and the community has instead defaulted to traditional practices that vary between laboratories. In this paper, we quantitatively evaluate the accuracy of alternative paleomagnetic sampling strategies through numerical experiments and an associated analytical framework. Our findings demonstrate a strong correspondence between the accuracy of an estimated paleopole position and the number of sites or independent readings of the time‐varying paleomagnetic field, whereas larger numbers of in‐site samples have a dwindling effect. This remains true even when a large proportion of the sample directions are spurious. This approach can be readily achieved in sedimentary sequences by distributing samples stratigraphically, considering each sample as an individual site. However, where the number of potential independent sites is inherently limited the collection of additional in‐site samples can improve the accuracy of the paleopole estimate (although with diminishing returns with increasing samples per site). Where an estimate of the magnitude of paleosecular variation is sought, multiple in‐site samples should be taken, but the optimal number is dependent on the expected fraction of outliers. The use of filters based on angular distance helps the accuracy of paleopole estimation, but leads to inaccurate estimates of paleosecular variation. We provide both analytical formulas and a series of interactive Jupyter notebooks allowing optimal sampling strategies to be developed from user‐informed expectations. 
    more » « less
  3. Abstract Our understanding of Earth's paleogeography relies heavily on paleomagnetic apparent polar wander paths (APWPs), which represent the time‐dependent position of Earth's spin axis relative to a given block of lithosphere. However, conventional approaches to APWP construction have significant limitations. First, the paleomagnetic record contains substantial noise that is not integrated into APWPs. Second, parametric assumptions are adopted to represent spatial and temporal uncertainties even where the underlying data do not conform to the assumed distributions. The consequences of these limitations remain largely unknown. Here, we address these challenges with a bottom‐up Monte Carlo uncertainty propagation scheme that operates on site‐level paleomagnetic data. To demonstrate our methodology, we present an extensive compilation of site‐level Cenozoic paleomagnetic data from North America, which we use to generate a high‐resolution APWP. Our results demonstrate that even in the presence of substantial noise, polar wandering can be assessed with unprecedented temporal and spatial resolution. 
    more » « less